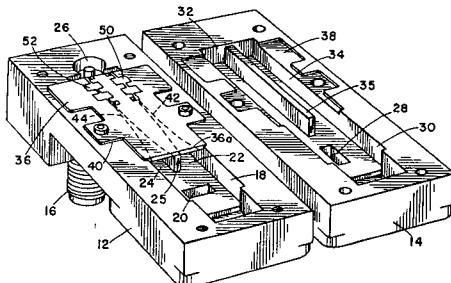


Patent Abstracts

These Patent Abstracts of recently issued patents are intended to provide the minimum information necessary for readers to determine if they are interested in examining the patent in more detail. Complete copies of patents are available for a small fee by writing: U.S. Patent and Trademark Office, Box 9, Washington, DC 20231.

4,480,336

Oct. 30, 1984 4,488,124


Dec. 11, 1984

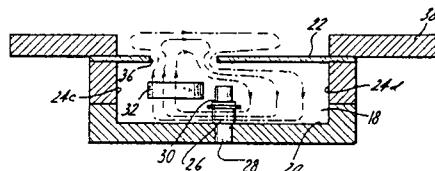
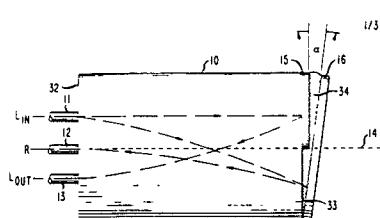
Orthogonal Hybrid Finline Mixer

Inventors: Joseph S. Wong, Kuo-Ing Chung, and Kenneth A. Rudenauer.
Assignee: General Dynamics, Pomona Division.
Filed: Sept. 20, 1982.

Abstract—A Ka-band orthogonal hybrid finline mixer includes a two-piece housing forming an orthogonal hybrid-T junction having a finline mounted within the waveguide E-plane at the output of the orthogonal hybrid-T junction with one-half of the finline substrate mounted within the top waveguide housing and the other half inserted within the bottom waveguide housing.

10 Claims, 9 Drawing Figures

4,486,071



Dec. 4, 1984

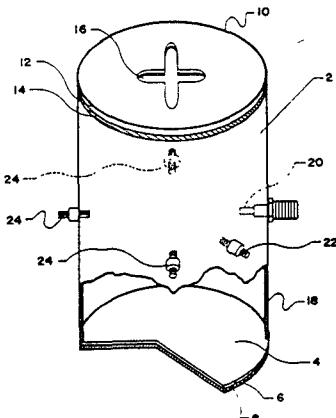
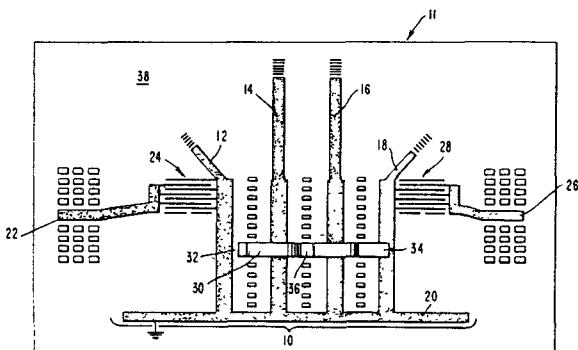
Optical Coupling Device

Inventor: Frank H. Levinson.
Assignee: AT & T Bell Laboratories.
Filed: July 7, 1982

Abstract—An optical coupling device for diverting light among different transmission elements. A plurality of transmission elements (11, 12, 13) are coupled to one surface (32) of a focusing element (10). Positioned near the opposite surface (32) are first and second at least partially reflecting elements (15 and 16). The first element (15) may be affixed to the end surface of the focusing element and covers only a portion thereof. The second element is positioned further from the end surface and at an angle to the first element. The area of the first element is chosen to produce a desired splitting ratio, and the angle between elements can be adjusted to maximize coupling efficiency between the transmission elements. The device can be used, for example, as a three port coupler, an asymmetric four port coupler, or a four port power divider.

17 Claims, 11 Drawing Figures

4,488,130



Dec. 11, 1984

Microwave Integrated-Circuit Bandpass Filter

Inventors: Frederick A. Young, Robert J. Ahulii, and Roy K. Rikimaru.
Assignee: Hughes Aircraft Company.
Filed: Feb. 24, 1983.

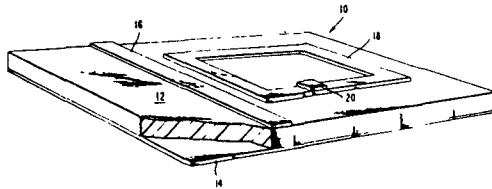
Abstract—The present invention provides an improved microwave integrated circuit filter for electromagnetic waves. The filter includes a waveguide and three, four or more resonators spaced from one another and extending from the waveguide. Means, which may include a conductive ribbon, are provided electromagnetically coupling nonadjacent resonators.

4 Claims, 2 Drawing Figures

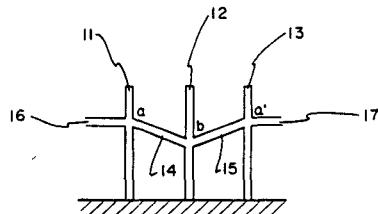
4,489,292

Dec. 18, 1984

4,488,131


Dec. 11, 1984

MIC Dual-Mode Ring Resonator Filter


Inventors: Edward L. Griffin, Harvey M. Endler, and Frederick A. Young.
 Assignee: Hughes Aircraft Company.
 Filed: Feb. 25, 1983.

Abstract—An electromagnetic filter assembly comprises a transmission line electromagnetically coupled to a dual mode resonator having a means for differentially tuning the two modes. The filter may be incorporated in a microwave integrated circuit, and the tuning means may be a movable dielectric slab asymmetrically disposed on the resonator.

4 Claims, 2 Drawing Figures

11 Claims, 8 Drawing Figures

4,489,293

Dec. 18, 1984

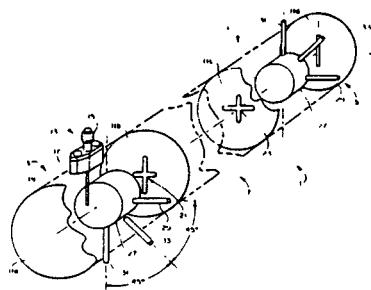
4,488,132

Dec. 11, 1984

Temperature-Compensated Resonant Cavity

Inventors: Adrian V. Collins and Patrick M. Naraine.
 Assignee: Com Dev Ltd.
 Filed: Dec. 13, 1982.

Abstract—A resonant microwave cavity 2 has a bi-metal end cap 4 or a tri-metal end cap 26. The end caps 4, 26 include irises 10, 28. The end caps are affixed to walls of the cavity 2 in the usual manner. As temperature varies, the end caps or irises expand into or out of the cavity to compensate for the increase or decrease in length of the cavity walls due to variations in temperature. The internal volume of the cavity is maintained substantially constant. When a bi-metal end cap is used, each layer of metal has a different coefficient of expansion. When a tri-metal end cap is used, the center layer has the highest coefficient of thermal expansion.


18 Claims, 14 Drawing Figures

Miniature Dual-Mode Dielectric-Loaded Cavity Filter

Inventor: Slawomir J. Fiedziszko.
 Assignee: Ford Aerospace & Communications Corporation.
 Filed: Feb. 14, 1983.

Abstract—A ceramic resonator element having high Q , high dielectric constant, and a low temperature coefficient of resonant frequency is enclosed within a cavity to form a composite microwave resonator having reduced dimensions and weight as compared to a simple cavity resonator. A pair of tuning screws extend into the cavity along orthogonal axes to tune the structure to resonance along these axes at frequencies near the fundamental resonance of the ceramic element. Several such cavities can be formed in a short length of waveguide by the use of transverse partitions at spaced intervals and coupling between cavities can be accomplished by using simple slot, cross or circular irises. In each cavity, a mode-perturbing screw is positioned along an axis 45° from each of the orthogonal tuning screws, such that resonance along either of the orthogonal axes is coupled to excite resonance also along the other. The realization of complex filter functions requiring cross couplings is feasible by means of coupling separately to only one of the two orthogonal resonant modes in the cavities.

14 Claims, 4 Drawing Figures

4,490,695

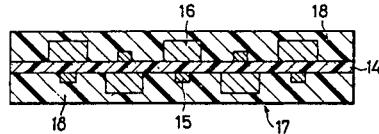
Dec. 25, 1984

Wideband Power Adder-Divider for High-Frequency Circuits and Impedance Transformer Realized on the Basis of the Adder-Divider

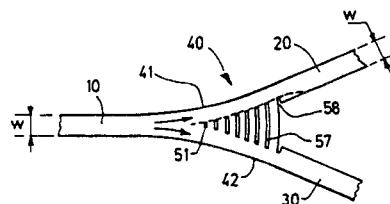
Inventor: Frans C. de Ronde.
 Assignee: U.S. Philips Corporation.
 Filed: Mar. 4, 1983.

Abstract—A wideband power adder-divider for high-frequency circuits including a first conductive transmission line (10) for passing a high-frequency current, second and third conductive transmission lines (20) and (30) over which this high-frequency current is distributed, and a conductive wedge-shaped transition section (40) joining the first to the second and third lines. This section has two arc-shaped outer edges (41) and (42) which are tangentially connected at one end of the section to the first line and at the other end to the second and third lines. The section includes parallel slots extending transversely to the direction of propagation of the current. The parallel slots (51) to (58) have ends which are separated from the arc-shaped edges by a distance which is less than the width of the second and third transmission lines.

4,490,690


Dec. 25, 1984

Stripline Cable


Inventor: Hirosuki Suzuki.
 Assignee: Junkosha Company, Ltd.
 Filed: Apr. 22, 1982.

Abstract—A stripline cable is provided comprising a dielectric layer and a plurality of sets of narrow signal conductors and wider ground conductors which are disposed in confronting relation to each other with the dielectric layer sandwiched therebetween. The signal and ground conductors are alternately arranged transversely of the conductors. The dielectric layer is preferably made of porous polytetrafluoroethylene resin. With this arrangement, crosstalk in the stripline can be greatly reduced and signals can be transmitted at higher speeds over the stripline.

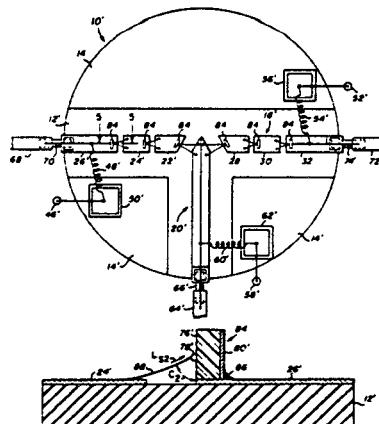
6 Claims, 4 Drawing Figures

7 Chains, 3 Drawing Figures

4,490,694

Dec. 25, 1984

4,490,696

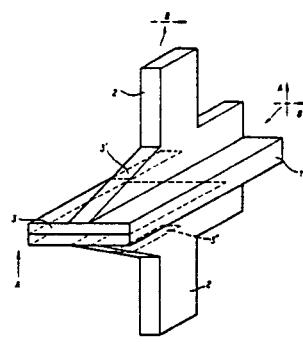

Dec. 25, 1984

Microwave Switch Wherin p-i-n Diode is Mounted Orthogonal to Microstrip Substrate

Inventor: James L. Godbout.
 Assignee: Eaton Corporation.
 Filed: July 28, 1982.

Abstract—An improved microwave multithrow switch incorporating pin diodes wherein the pin diodes are mounted orthogonally to the conductivity stripline.

7 Claims, 6 Drawing Figures



Crossed Waveguide-Type Polarization Separator

Inventors: Fumio Takeda, Osami Ishida, and Yoji Isoda.
 Assignee: Mitsubishi Denki Kabushiki Kaisha.
 Filed: Dec. 9, 1981.

Abstract—A crossed waveguide-type polarization separator comprises a crossed waveguide for propagating orthogonal linear polarized waves, at least one conductor septum fitted in the crossed waveguide to totally reflect only one polarized wave in the linear polarized waves, at least one subwaveguide for receiving one linear polarized wave formed by the total reflection of the conductor septum, and a waveguide for receiving the other linear polarized wave which is not reflected by the conductor septum.

3 Claims, 5 Drawing Figures

